Refinements of some fractional integral inequalities for refined $(\alpha ,h-m)$-convex function
نویسندگان
چکیده
Abstract This article investigates new inequalities for generalized Riemann–Liouville fractional integrals via the refined $(\alpha ,h-m)$ ( α , h − m ) -convex function. The established results give refinements of integral $(h-m)$ -convex, ,m)$ $(s,m)$ s and related functions. Also, k -fractional versions given by using a parameter substitution are provided.
منابع مشابه
Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملSome Refinements of Hilbert-pachpatte Type Integral Inequalities
In this paper, we obtain an extension of a multivariable integral inequality of Hilbert-Pachpatte type. By specializing the upper estimate functions in the hypothesis and the parameters, we obtain many special cases.
متن کاملOn Some Inequalities for h-Convex Functions
In this paper some inequalities for h-convex functions are established. Mathematics Suject Classification: Primary 26D15; Secondary 26A51
متن کاملSome Fractional Integral Inequalities in Quantum Calculus
In this paper, using the Riemann-Liouville fractional q-integral, we establish some new fractional integral inequalities by using two parameters of deformation q1 and q2.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2021
ISSN: ['1687-1839', '1687-1847']
DOI: https://doi.org/10.1186/s13662-021-03544-0